Применение геометрических фигур с недостающими элементами в качестве дидактического материала при тематическом и обобщающем повторении
Автор: Изотова Ирина Юрьевна
Организация: МОУ СШ № 81 Центрального района г. Волгограда
Населенный пункт: Волгоград
В этом смысле особый интерес представляет рассмотрение таких фигур, у которых отдельные элементы непосредственным измерением найти нельзя, поскольку это не позволяют сделать либо возможности инструментов, либо особенности фигуры (некоторые ее элементы могут быть недоступны или исключены). В таком случае при решении задач на вычисление приходится очень часто прибегать к геометрическим построениям, исследованиям, доказательствам, в результате чего задача приобретает комплексный характер.
Фигуры с недостающими элементами дают широкие возможности для составления задач, требующих значительного теоретического багажа. Такие задачи представляют особую ценность при тематическом и обобщающем повторении, когда приходится повторять материал, уже известный учащимся, и потому не вызывающий такого интереса как новый.
Эти задачи являются также полезным дидактическим материалом для самостоятельных практических и лабораторных работ по геометрии. Для этой цели изготавливаются модели различных фигур с исключенными элементами. Эти пособия нумеруются и вместе с каталогом на них и указанием характеристик хранятся в кабинете математики. При проведении лабораторных работ учитель раздает учащимся модели фигур и формулирует задание. Ученики прямо на полученной модели выполняют необходимые построения, измерения, а результаты заносят в тетрадь. В тетради даются краткое описание хода работы, необходимые обоснования, доказательства и вычисления. После проверки учителем на модель наклеивается чистая бумага и пособие снова готово к использованию.
Вот некоторые примеры отдельных задач на геометрические фигуры с исключенными элементами.
Задача 1.
Определить, пользуясь линейкой и транспортиром, градусную меру углов четырехугольника, у которого все вершины исключены.
Решение:
Соединим две произвольные точки M и N, принадлежащие смежным сторонам четырехугольника. Получим треугольник, у которого одна сторона MN, а две другие АM и АN, где А одна из недоступных вершин четырехугольника. Тогда углы M и N треугольника АMN можно измерить, а третий угол (один из углов четырехугольника) – найти вычислением. Таким способом найдем три угла, а четвертый угол определим вычитанием из известной суммы углов четырехугольника суммы трех найденных углов.
При решении задач с исключенными элементами используются не только характеристические свойства фигур, но и геометрические преобразования, в частности параллельны перенос, симметрия, подобие.
Задача 2.
В модели трапеции, вырезанной из бумаги, оторваны все углы. Проведите доступные части диагоналей. Определите длины диагоналей трапеции.
Решение:
Выполним параллельный перенос боковых сторон трапеции. Из произвольной точки Е верхнего основания трапеции проведем ЕА1 || АВ, ЕD || CD.
Точки H и F – середины ЕА1 и ЕD1. Проведем среднюю линию трапеции MN. Тогда MH + FN = ВС.
Имея среднюю линию и длину верхнего основания ВС можно ответить на вопрос задачи. На средней линии MN отложим отрезок LN, равный BC. Проведем LK || CD. BCDK – параллелограмм. На его диагонали BD лежит точка P – середина отрезка LN. Проведем PQ || CN и соединим точки Q и N. Диагональ BD проходит через точку Р параллельно QN. Но диагональ BCDK является одновременно диагональю трапеции. Значит отрезок BD искомый и BD = 2QN.
Аналогично определяется и вторая диагональ.
Полный текст статьи см. в приложении.
БЕСПЛАТНЫЕ вебинары

