Развитие логического мышления на уроках математики в начальной школе

Автор: Дормидонтова Татьяна Владимировна

Организация: МБОУ Ягубовская СОШ

Населенный пункт: Нижегородская область, с. Ягубовка

Образовательный стандарт нового поколения ставит перед начальным образованием новые цели. Теперь ребенок в начальной школе должен научиться не только читать, писать, считать, но и должен овладеть двумя группами новых умений. Речь идет, во – первых, об универсальных учебных действиях, составляющих умения учиться: навыках решения творческих задач и навыках поиска, анализа и интерпретации информации. Во – вторых, речь идет о формировании у детей мотивации к обучению, саморазвитию, самопознанию. Учителю, который до этого времени занимался с ребятами просто математикой как таковой, теперь придется на знакомом ему материале решать еще и новые нестандартные задачи. Следует, уже в начальной школе дети должны овладеть элементами логических последовательных действий. (сравнение, обобщение, синтез, анализ, классификация и др.) Поэтому, одной из важнейших задач, стоящих перед учителем начальных классов, является развитие самостоятельной логики мышления, которая позволила бы детям строить умозаключения, приводить доказательства, высказывания, логически связанные между собой, делать выводы, обосновывая свои суждения, и в конечном итоге, самостоятельно приобретать знания.

Я работаю по методической теме «Развитие логического мышления младших школьников на уроках математики». Тема является сферой моего методического интереса.
Целью работы по данной теме является попытка решить проблемы активизации познавательной деятельности учащихся, воспитания у детей самостоятельности и активности как черт личности, формирование стремления и привычки к трудовому усилию, настойчивости в преодолении трудностей.
Одной из важнейших задач ставлю развитие логики мышления, которая бы позволила детям строить умозаключения, приводить доказательства, высказывания, логически связанные между собой; делать вывод, обосновывая свои суждения, и, в конечном счёте, самостоятельно приобретать знания.

Роль математики в развитии логического мышления исключительно велика. Причина столь исключительной роли математики в том, что это самая теоретическая наука из всех изучаемых в школе. Выдающийся отечественный математик А.Н. Колмогоров писал: «Математика не просто один из языков. Математика – это язык плюс рассуждения, это как бы язык и логика вместе. Математика – орудие размышления. В ней сконцентрированы результаты точного мышления многих людей. При помощи математики можно связать одно рассуждение за другим, очевидные сложности природы с её странными законами и правилами, каждое из которых допускает отдельное очень подробное объяснение, на самом деле тесно связаны. Систематическое использование на уроках математики специальных задач и заданий, направленных на развитие логического мышления, расширяет математический кругозор младших школьников и позволяет более уверенно ориентироваться в простейших закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни.

От того, насколько сформировано мышление у ребёнка, будет во многом зависеть успешность обучения вообще, и математике в частности. Ведущую роль в развитии логического мышления играет работа в начальной школе.

Учитель на уроке математики должен использовать все логические приёмы.

Сравнение – это сопоставление предметов и явлений с целью найти сходство и различие между ними. Анализ – это мысленное расчленение предмета или явления на образующие его части, выделение в нём отдельных частей, признаков и свойств.Синтез – это мысленное соединение отдельных элементов, частей и признаков в единое целое. Анализ и синтез неразрывно связаны, находятся в единстве друг с другом в процессе познания. Анализ и синтез – важнейшие мыслительные операции.Абстракция – это мысленное выделение существенных свойств и признаков предметов или явлений при одновременном отвлечении от несуществующих. Абстракция лежит в основе обобщения.Обобщение – мысленное объединение предметов и явлений в группы по тем общим и существенным признакам, которые выделяются в процессе абстрагирования. Процессам абстрагирования и обобщения противоположен вопрос конкретизации. Конкретизация – мыслительный переход от общего к единичному, которое соответствует этому общему. В учебной деятельности конкретизировать – значит привести пример.

Я работаю по программе «Школа России». Начиная с 1 класса, я ввожу специальные задания и задачи, направленные на развитие познавательных возможностей и способностей детей. Использую дополнительные задания развивающего характера, задания логического характера, требующие применения знаний в новых условиях.

Чему нужно научить ребенка при обучении математике? Размышлять, объяснять получаемые результаты, сравнивать, высказывать догадки, проверять, правильные ли они; наблюдать, обобщать и делать выводы. Такие задания включаю в занятия в определенной системе. Учить подмечать закономерности, сходство и различие начинаю с простых упражнений, постепенно усложняя их. С этой целью подбираю серию упражнений с постепенным повышением уровня трудности.

Первый класс:

Система заданий предусматривает несколько групп систематически выстроенных задач и заданий, направленных преимущественно на выделение, прослеживание, распределение и изменение различных признаков и характеристик объектов. Примеры заданий:

- Задания на выделение признаков у одного или нескольких объектов. Их цель – обратить внимание ученика на значимость того или иного признака. При этом задание оформлено в виде конструктивного письма графической формы, понятной ребенку без текста, что позволяет использовать эти материалы даже при работе с детьми, не умеющими хорошо читать;

- Задания на прямое распределение признаков (цвет, форма, размер);

- Задания на распределение с использованием отрицания одного из признаков;

- Задания, связанные с изменением признака;

- Те же самые задания, но трансформированные в другую графическую форму, более формализованную (матрицы);

- Задания, связанные на поиск недостающей фигуры, также оформленные в виде неполной матрицы (таблицы). Умение справляться с такими заданиями традиционно считается показателем высокого уровня умственного развития;

Особое место в системе заданий уделяется развитию словесно-логического мышления: пониманию специальных речевых структур с употреблением связок “и”, “или”, “тоже”, “также”, слов “все”, “некоторые”, “любые”.

Во втором классе продолжается работа по развитию умения производить простые логические действия. Задания на классификацию усложнились: они неразрывно связаны с развитием у детей способности строить цепочки логических рассуждений. Так, при нахождений закрытой фигуры в матрицах Ровена или недостающие фигуры в графических матрицах ученик учится последовательно объяснять, почему выбрана именно эта фигура.

Развитие словесно-логического мышления в этом возрасте возможно с помощью заданий на определение истинности или ложности высказывания, заданий на понимание высказываний с кванторами общности и существования. Предполагаемые задания:

- Словесные тесты (предлагается ряд слов, в каждом из которых пять дается в скобках, а одно перед ними. Ребята должны выделить два слова, наиболее существенные для слова перед скобками; используются упражнения, направленные на формирование умения делить объекты на классы по заданному основанию и др.;

- Работа с логическими цепочками;

- Работа с анаграммами;

- Работа с числовыми тестами;

- Решение логических задач;

- Ребусы, загадки;

- Задания на нахождение правильного ответа в ряду из ложных и правильных ответов (с объяснениями, почему этот ответ правильный)

- Обучение доказыванию (задачи на достраивание составных высказываний, логические тестовые задачи).

В 3-4-х классах школьники должны научиться выстраивать иерархию понятий, вычислять более широкие и более узкие понятия, находить связи между родовыми и видовыми понятиями. К этому этапу развития логического мышления можно отнести и формирование умений давать определение понятий и на основе умения находить более общее родовое понятие и видовые отличительные признаки (игра – хоккей, растение – дерево – хвойное дерево).

В 4-ом классе необходимо уделить внимание развитию аналитической деятельности, которая, как показано выше, в 1-2-х классах заключается в анализе отдельного предмета, а к 3-4-му классу – в умении анализировать связи между предметами и явлениями (часть и целое, рядоположенность, противоположность, причина и следствие, наличие тех или иных функциональных отношений и др.).

Занятия по логике можно проводить в форме самостоятельной индивидуальной работы. Над нерешенными задачами предложить подумать дома, соблюдать при этом принцип добровольности, но мотивируя детей на достижение результата. Усвоение многих тем может быть более успешным, если использовать форму “командной” игры.

Немаловажным в развитии логического мышления является отгадывание ребусов, дидактические игры. В игре всегда содержится элемент неожиданности и необычности, решается какая-либо задача, проблема, т. е. игра выполняет на уроке те же функции, что и занимательная задача. Очень часто здесь присутствует соревновательный элемент и возможности для создания игровых ситуаций чрезвычайно велики.

Математические головоломки. Основное достоинство подобных заданий - они требуют от ученика выделения существенных связей между компонентами заданий, при этом часто происходит смена хода мысли учеников на обратный, что увеличивает свободу действий ученика, которая в обычных условиях достигается очень редко.

Числовые ребусы. В этом логическом приёме используются зашифрованные задания, требующие рассуждений, обратных тем, к которым привыкли ученики. Фактически числовые ребусы есть ни что иное, как клубок логических связей, который надо распутать.

Геометрия в пространстве. Геометрия в целом, как и её основные составляющие- фигуры, логика и практическая применимость- позволяют учителю гармонично развивать образное и логическое мышление ребёнка любого возраста, прививать ему навыки практической деятельности.

Задачи- шутки. На первый взгляд эти задачи очень простые, но нельзя спешить быстро дать ответ- он может оказаться неверным. Правильное решение таких задач чаще всего не требует никаких дополнительных знаний, главное - внимательно читать условие задачи и постараться миновать расставленные ловушки.

Включение в урок математических героев. В урок вводится какой-либо математический герой, который или решает задание, или предлагает его для решения, или придумывает фокусы и т. д. Иногда вводятся два героя: один сообразительный, а другой невнимательный.

В новых образовательных стандартах сказано: «при обучении различным предметам используются задачи, которые принято называть учебными, с их помощью формируются предметные знания, умения, навыки. Особенно широко применяются задачи в математике, физике, химии, географии. Как правило, в них используются математические способы решения». связи с этим основная работа для развития логического мышления на уроках математики должна вестись с задачей. Ведь в любой задаче заложены большие возможности для развития логического мышления. Нестандартные логические задачи – это инструмент для такого развития.

Предлагая учащимся нестандартные задачи, мы формируем у них способность выполнять логические операции и одновременно развиваем их. Критерием отбора таких задач является их учебное назначение; соответствие теме урока или серии уроков. Такие задачи можно решать и при объяснении нового материала, и при закреплении пройденного.

При решении занимательных задач преследуются следующие цели:

формирование и развитие мыслительных операций: анализа и синтеза; сравнения, аналогии, обобщения и т.д.;

Таким образом, формирование логического мышления – это важная составная часть педагогического процесса. Помочь в полной мере проявить свои способности, развить инициативу, самостоятельность, творческий потенциал - одна из основных задач современной школы. Успешная реализация этой задачи во многом зависит от сформированности у учащихся логического мышления.

Опубликовано: 04.12.2025
Мы сохраняем «куки» по правилам, чтобы персонализировать сайт. Вы можете запретить это в настройках браузера